261 research outputs found

    Cost-efficient Selective Network Caching in Large-Area Vehicular Networks using Multi-objective Heuristics

    Get PDF
    In the last decade the interest around network caching tech- niques has augmented notably for alleviating the ever-growing demand of resources by end users in mobile networks. This gained momentum stems from the fact that even though the overall volume of traffic re- trieved from Internet has increased at an exponential pace over the last years, several studies have unveiled that a large fraction of this traffic is usually accessed by multiple end users at nearby locations, i.e. content demands are often local and redundant across terminals close to each other, even in mobility. In this context this manuscript explores the ap- plication of multi-objective heuristics to optimally allocate cache profiles over urban scenarios with mobile receivers (e.g. vehicles). To this end we formulate two conflicting objectives: the utility of the cache allocation strategy, which roughly depends on the traffic offloaded from the net- work and the number of users demanding contents; and its cost, given by an cost per unit of stored data and the rate demanded by the cached profile. Simulations are performed and discussed over a realistic vehicu- lar scenario modeled over the city of Cologne (Germany), from which it is concluded that the proposed heuristic solver excels at finding caching solutions differently balancing the aforementioned objectives

    An Analysis of Coalition-Competition Pricing Strategies for Multi-Operator Mobile Traffic Offloading using Bi-objective Heuristics

    Get PDF
    In a competitive market relationships between telecommuni- cations operators serving simultaneously over a certain geographical area are diverse and motivated by very different business strategies and goals. Such relationships ultimately yield distinct pricing portfolios depending on the contractual affiliation of the user being served. Furthermore a key role in the last decade is the concept of tethering (connection sharing) which, when controlled by the operator, may help alleviating the con- sumption of network resources in densely populated scenarios. In this work we investigate the application of bi-objective heuristics for the de- sign of Pareto-optimal network topologies leading to an optimal Pareto between the revenue of the incumbent operators in the scenario and the quality of service degradation experienced by the end users as a result of tethering. Based on computer simulation this work unveils that such a Pareto-optimal set of topologies is strongly determined by the market relationships between such operators

    Nature-inspired heuristics for the multiple-vehicle selective pickup and delivery problem under maximum profit and incentive fairness criteria

    Get PDF
    This work focuses on wide-scale freight transportation logistics motivated by the sharp increase of on-line shopping stores and the upsurge of Internet as the most frequently utilized selling channel during the last decade. This huge ecosystem of one-click-away catalogs has ultimately unleashed the need for efficient algorithms aimed at properly scheduling the underlying transportation resources in an efficient fashion, especially over the so-called last mile of the distribution chain. In this context the selective pickup and delivery problem focuses on determining the optimal subset of packets that should be picked from its origin city and delivered to their corresponding destination within a given time frame, often driven by the maximization of the total profit of the courier service company. This manuscript tackles a realistic variant of this problem where the transportation fleet is composed by more than one vehicle, which further complicates the selection of packets due to the subsequent need for coordinating the delivery service from the command center. In particular the addressed problem includes a second optimization metric aimed at reflecting a fair share of the net benefit among the company staff based on their driven distance. To efficiently solve this optimization problem, several nature-inspired metaheuristic solvers are analyzed and statistically compared to each other under different parameters of the problem setup. Finally, results obtained over a realistic scenario over the province of Bizkaia (Spain) using emulated data will be explored so as to shed light on the practical applicability of the analyzed heuristics

    Cost-efficient deployment of multi-hop wireless networks over disaster areas using multi-objective meta-heuristics

    Get PDF
    Nowadays there is a global concern with the growing frequency and magnitude of natural disasters, many of them associated with climate change at a global scale. When tackled during a stringent economic era, the allocation of resources to efficiently deal with such disaster situations (e.g., brigades, vehicles and other support equipment for fire events) undergoes severe budgetary limitations which, in several proven cases, have lead to personal casualties due to a reduced support equipment. As such, the lack of enough communication resources to cover the disaster area at hand may cause a risky radio isolation of the deployed teams and ultimately fatal implications, as occurred in different recent episodes in Spain and USA during the last decade. This issue becomes even more dramatic when understood jointly with the strong budget cuts lately imposed by national authorities. In this context, this article postulates cost-efficient multi-hop communications as a technological solution to provide extended radio coverage to the deployed teams over disaster areas. Specifically, a Harmony Search (HS) based scheme is proposed to determine the optimal number, position and model of a set of wireless relays that must be deployed over a large-scale disaster area. The approach presented in this paper operates under a Pareto-optimal strategy, so a number of different deployments is then produced by balancing between redundant coverage and economical cost of the deployment. This information can assist authorities in their resource provisioning and/or operation duties. The performance of different heuristic operators to enhance the proposed HS algorithm are assessed and discussed by means of extensive simulations over synthetically generated scenarios, as well as over a more realistic, orography-aware setup constructed with LIDAR (Laser Imaging Detection and Ranging) data captured in the city center of Bilbao (Spain)

    FOOD DELIVERY BASED ON PSO ALGORITHM AND GOOGLE MAPS

    Get PDF
    This article presents a solution to deal with the optimization of delivery routes problem for a mobile application focused on the restaurant sector, by using a bioinspired algorithm (PSO) to minimize delivery costs, maximize a greater number of deliveries and recommend an optional route for food delivery. Different computational experiments are carried out by using Google Maps (API) for showing the best delivery route. The results obtained are very promising for offering a good delivery service

    Hybridizing Cartesian Genetic Programming and Harmony Search for Adaptive Feature Construction in Supervised Learning Problems

    Get PDF
    The advent of the so-called Big Data paradigm has motivated a flurry of research aimed at enhancing machine learning models by following very di- verse approaches. In this context this work focuses on the automatic con- struction of features in supervised learning problems, which differs from the conventional selection of features in that new characteristics with enhanced predictive power are inferred from the original dataset. In particular this manuscript proposes a new iterative feature construction approach based on a self-learning meta-heuristic algorithm (Harmony Search) and a solution encoding strategy (correspondingly, Cartesian Genetic Programming) suited to represent combinations of features by means of constant-length solution vectors. The proposed feature construction algorithm, coined as Adaptive Cartesian Harmony Search (ACHS), incorporates modifications that allow exploiting the estimated predictive importance of intermediate solutions and, ultimately, attaining better convergence rate in its iterative learning proce- dure. The performance of the proposed ACHS scheme is assessed and com- pared to that rendered by the state of the art in a toy example and three practical use cases from the literature. The excellent performance figures obtained in these problems shed light on the widespread applicability of the proposed scheme to supervised learning with legacy datasets composed by already refined characteristics

    Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems

    Get PDF
    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures

    Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems

    Get PDF
    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures
    corecore